Processos Autoresgresivos de Erradicação da Média Mover Os processos de erro em média móvel (ARMA) autoregressivos e outros modelos que envolvem atrasos de erros podem ser estimados usando instruções FIT e simuladas ou previstas usando instruções SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados para modelos com resíduos auto-correlacionados. A macro AR pode ser usada para especificar modelos com processos de erro auto - gressivo. A macro MA pode ser usada para especificar modelos com processos de erro em média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Note-se que os s são independentes e distribuídos de forma idêntica e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel como onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é definido automaticamente pelo PROC MODELE, pois a função ZLAG deve ser usada para modelos MA para truncar a recursão dos atrasos. Isso garante que os erros atrasados começam em zero na fase de inicialização e não propagam os valores faltantes quando as variáveis do período de inicialização faltam, e garante que os erros futuros sejam zero, em vez de perder durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. Este modelo escrito usando a macro MA é o seguinte: Formulário geral para modelos ARMA O processo geral ARMA (p, q) tem a seguinte forma Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros da média autorregressiva e móvel para os vários atrasos. Você pode usar qualquer nome que você deseja para essas variáveis, e há muitas maneiras equivalentes de que a especificação possa ser escrita. Os processos ARMA do vetor também podem ser estimados com PROC MODELO. Por exemplo, um processo AR (1) de duas variáveis para os erros das duas variáveis endógenas Y1 e Y2 pode ser especificado da seguinte forma: Problemas de convergência com modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ou porque as iterações se afastaram de valores razoáveis. O cuidado deve ser usado na escolha dos valores iniciais para os parâmetros ARMA. Os valores iniciais de 0,001 para parâmetros ARMA geralmente funcionam se o modelo se adequar bem aos dados e o problema está bem condicionado. Note-se que um modelo de MA pode ser frequentemente aproximado por um modelo AR de alta ordem e vice-versa. Isso pode resultar em colinearidade elevada em modelos mistos de ARMA, o que, por sua vez, pode causar graves condicionamentos nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos em zero (ou para estimativas anteriores razoáveis se disponíveis). Em seguida, use outra instrução FIT para estimar somente os parâmetros ARMA, usando os valores dos parâmetros estruturais da primeira execução. Uma vez que os valores dos parâmetros estruturais provavelmente estarão próximos de suas estimativas finais, as estimativas dos parâmetros ARMA podem agora convergir. Finalmente, use outra declaração FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros agora são provavelmente muito próximos das suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os atrasos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SASETS são os seguintes: mínimos quadrados condicionais (procedimentos ARIMA e MODELO) mínimos quadrados incondicionais (procedimentos AUTOREG, ARIMA e MODELO) probabilidade máxima (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (AUTOREG Somente procedimento) Hildreth-Lu, que exclui as primeiras observações p (somente procedimento MODEL) Consulte o Capítulo 8, Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As iniciações CLS, ULS, ML e HL podem ser realizadas pelo PROC MODELO. Para erros AR (1), essas iniciais podem ser produzidas como mostrado na Tabela 19.2. Esses métodos são equivalentes em grandes amostras. Tabela 19.2 Inicializações realizadas pelo PROC MODELO: AR (1) ERROS Os atrasos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os procedimentos de ARIMA e MODELO seguintes são suportados pelos seguintes procedimentos: mínimos quadrados incondicionais, mínimos quadrados condicionais. O método dos mínimos quadrados condicionais para estimar os termos de erro em média móvel não é otimizado porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos remanescentes iniciais, que se estendem antes do início dos dados, são assumidos como 0, seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Geralmente, essa diferença converge rapidamente para 0, mas para processos em média móveis quase não-reversíveis, a convergência é bastante lenta. Para minimizar este problema, você deve ter muitos dados e as estimativas dos parâmetros da média móvel devem estar bem dentro do intervalo inversível. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: os erros médios em movimento podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) ao processo de média móvel. Um processo de média móvel geralmente pode ser bem-aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A AR Macro A macro macro SAS gera declarações de programação para PROC MODEL para modelos autoregressivos. A macro AR faz parte do software SASETS e nenhuma opção especial precisa ser configurada para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equação estrutural ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de autorregressão: autoregresão vetorial irrestrita Autoregresão vetorial restrita Autoriação Univariada Para modelar o termo de erro de uma equação como processo autoregressivo, use a seguinte declaração após a equação: Por exemplo, suponha que Y seja um Função linear de X1, X2 e um erro AR (2). Você escreveria este modelo da seguinte maneira: as chamadas para AR devem vir após todas as equações ao qual o processo se aplica. A invocação de macro anterior, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 19.58. Figura 19.58 Saída da opção LIST para um modelo AR (2) Procedimento MODELO As variáveis prefixadas PRED são variáveis de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às declarações explicitamente escritas na seção Formulário geral para modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em atrasos selecionados. Por exemplo, se você quisesse parâmetros autorregressivos nos intervalos 1, 12 e 13, você pode usar as seguintes instruções: Essas instruções geram a saída mostrada na Figura 19.59. Figura 19.59 Saída da opção LIST para um modelo AR com Lags em 1, 12 e 13 Existem variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais de AR usa todas as observações e assume zeros para os atrasos iniciais de termos autorregressivos. Ao usar a opção M, você pode solicitar que o AR use o método de mínimos quadrados incondicionais (ULS) ou máximo (ML). Por exemplo, as discussões desses métodos são fornecidas na seção AR Condições iniciais. Ao usar a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos de autorregressão iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo auto - gressivo à variável endógena, em vez do termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os últimos atrasos de Y para a equação no exemplo anterior, você poderia usar AR para gerar os parâmetros e atrasos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 19.60. Figura 19.60 LIST Opção Saída para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma intercepção e os valores de Y nos cinco períodos mais recentes. Autoregression vetorial sem restrições Para modelar os termos de erro de um conjunto de equações como um processo auto-regressivo de vetor, use a seguinte forma da macro AR após as equações: O nome do nome do processo é qualquer nome que você fornece para que AR use na criação de nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processos para cada conjunto. O nome do processo garante que os nomes de variáveis usados sejam únicos. Use um valor curto do nome do processo para o processo se as estimativas dos parâmetros forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetros menores ou iguais a oito caracteres, mas isso é limitado pelo comprimento do nome do processo. Que é usado como um prefixo para os nomes dos parâmetros AR. O valor variablelist é a lista de variáveis endógenas para as equações. Por exemplo, suponha que os erros das equações Y1, Y2 e Y3 sejam gerados por um processo auto-regressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código similar para Y2 e Y3: Somente o método de mínimos quadrados condicionais (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições que a matriz de coeficientes seja 0 em atrasos selecionados. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes no intervalo 2 restrito a 0 e com os coeficientes nos atrasos 1 e 3 sem restrições: você pode modelar as três séries Y1Y3 como um processo auto-regressivo vetorial Nas variáveis em vez dos erros usando a opção TYPEV. Se você quer modelar Y1Y3 como uma função de valores passados de Y1Y3 e algumas variáveis ou constantes exógenas, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregente do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregente do modelo pode ser uma função de variáveis exógenas, ou pode ser parâmetros de interceptação. Se não existirem componentes exógenos para o modelo de autoregressão vetorial, incluindo sem interceptações, atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis antes de chamar AR. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo possui 18 (3 3 3 3) parâmetros. Sintaxe da AR Macro Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem o formulário geral especifica um prefixo para AR para usar na construção de nomes de variáveis necessárias para definir o processo AR. Se o endolista não for especificado, a lista endógena padrão nomeará. Que deve ser o nome da equação a que o processo de erro AR deve ser aplicado. O valor do nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações para as quais o processo AR deve ser aplicado. Se for dado mais de um nome, um processo vetorial irrestrito é criado com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolista padrão nomeará. Especifica a lista de atrasos em que os termos AR devem ser adicionados. Os coeficientes dos termos em atrasos não listados são definidos como 0. Todos os atrasos listados devem ser inferiores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglista é padrão para todos os atrasos 1 através de nlag. Especifica o método de estimação para implementar. Os valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). O MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos vetoriais AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis endógenas em vez de aos resíduos estruturais das equações. Autoregression vetorial restrita Você pode controlar quais parâmetros estão incluídos no processo, restringindo a 0 os parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis e definir a dimensão do processo. Em seguida, use chamadas de AR adicionais para gerar termos para equações selecionadas com variáveis selecionadas em atrasos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo afirma que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não de Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas no intervalo 1. Sintaxe de macro AR para vetor vetorial restrito O uso alternativo de AR pode impor restrições sobre um processo de AR vetorial ao chamar AR várias vezes para especificar diferentes termos de AR e atrasos para diferentes Equações. A primeira chamada tem o formulário geral especifica um prefixo para AR para usar na construção de nomes de variáveis necessárias para definir o processo do vetor AR. Especifica a ordem do processo AR. Especifica a lista de equações para as quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR, mas é esperar por informações adicionais especificadas em chamadas AR mais recentes para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolista da primeira chamada para o valor do nome podem aparecer na lista de equações na eqlist. Especifica a lista de equações cujos resíduos estruturais atrasados devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolista da primeira chamada para o valor do nome podem aparecer na varlist. Se não for especificado, varlist é padrão para endolista. Especifica a lista de atrasos em que os termos AR devem ser adicionados. Os coeficientes dos termos em atrasos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist é padrão para todos os atrasos 1 até nlag. A MA Macro A macro macro SAS gera declarações de programação para PROC MODEL para modelos em média móveis. A macro MA é parte do software SASETS e nenhuma opção especial é necessária para usar a macro. O processo de erro em média móvel pode ser aplicado aos erros de equação estrutural. A sintaxe da macro MA é a mesma que a macro AR, exceto que não existe um argumento TYPE. Quando você está usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SASIML produzem um processo de erro ARMA (1, (1 3)) e salve-o no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: as estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 19.61. Figura 19.61 Estimativas de um ARMA (1, (1 3)) Processo Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo de vetor MA não são necessárias, a sintaxe da macro MA tem o formulário geral especifica um prefixo para MA para usar na construção de nomes de variáveis necessárias para definir o processo MA e é o endolista padrão. É a ordem do processo de MA. Especifica as equações para as quais o processo MA deve ser aplicado. Se mais de um nome for dado, a estimativa de CLS é usada para o processo vetorial. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser inferiores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglista é padrão para todos os atrasos 1 através de nlag. Especifica o método de estimação para implementar. Os valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). O MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolista. Sintaxe de Macro MA para Média de Movimento de Vetor Restrito Um uso alternativo de MA é permitido para impor restrições em um processo de vetor de MA, chamando MA várias vezes para especificar diferentes termos e atrasos de MA para diferentes equações. A primeira chamada tem o formulário geral especifica um prefixo para MA para usar na construção de nomes de variáveis necessárias para definir o processo de vetor MA. Especifica a ordem do processo MA. Especifica a lista de equações para as quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo MA, mas é esperar por informações adicionais especificadas em chamadas MA mais recentes para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações a que as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais atrasados devem ser incluídos como regressores nas equações em eqlist. Especifica a lista de atrasos em que os termos MA devem ser adicionados. Os processos de erro médio-móvel contínuo (ARMA) e outros modelos que envolvem atrasos de erros podem ser estimados usando instruções FIT e simuladas ou previstas usando as instruções SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados para modelos com resíduos auto-correlacionados. A macro AR pode ser usada para especificar modelos com processos de erro auto - gressivo. A macro MA pode ser usada para especificar modelos com processos de erro em média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Note-se que os s são independentes e distribuídos de forma idêntica e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel como onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é definido automaticamente pelo PROC MODELE, pois a função ZLAG deve ser usada para modelos MA para truncar a recursão dos atrasos. Isso garante que os erros atrasados começam em zero na fase de inicialização e não propagam os valores faltantes quando as variáveis do período de inicialização faltam, e garante que os erros futuros sejam zero, em vez de perder durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. Este modelo escrito usando a macro MA é o seguinte: Formulário geral para modelos ARMA O processo geral ARMA (p, q) tem a seguinte forma Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros da média autorregressiva e móvel para os vários atrasos. Você pode usar qualquer nome que você deseja para essas variáveis, e há muitas maneiras equivalentes de que a especificação possa ser escrita. Os processos ARMA do vetor também podem ser estimados com PROC MODELO. Por exemplo, um processo AR (1) de duas variáveis para os erros das duas variáveis endógenas Y1 e Y2 pode ser especificado da seguinte forma: Problemas de convergência com modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ou porque as iterações se afastaram de valores razoáveis. O cuidado deve ser usado na escolha dos valores iniciais para os parâmetros ARMA. Os valores iniciais de 0,001 para parâmetros ARMA geralmente funcionam se o modelo se adequar bem aos dados e o problema está bem condicionado. Note-se que um modelo de MA pode ser frequentemente aproximado por um modelo AR de alta ordem e vice-versa. Isso pode resultar em colinearidade elevada em modelos mistos de ARMA, o que, por sua vez, pode causar graves condicionamentos nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos em zero (ou para estimativas anteriores razoáveis se disponíveis). Em seguida, use outra instrução FIT para estimar somente os parâmetros ARMA, usando os valores dos parâmetros estruturais da primeira execução. Uma vez que os valores dos parâmetros estruturais provavelmente estarão próximos de suas estimativas finais, as estimativas dos parâmetros ARMA podem agora convergir. Finalmente, use outra declaração FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros agora são provavelmente muito próximos das suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os atrasos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SASETS são os seguintes: mínimos quadrados condicionais (procedimentos ARIMA e MODELO) mínimos quadrados incondicionais (procedimentos AUTOREG, ARIMA e MODELO) probabilidade máxima (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (AUTOREG Somente procedimento) Hildreth-Lu, que exclui as primeiras observações p (somente procedimento MODEL) Consulte o Capítulo 8, Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As iniciações CLS, ULS, ML e HL podem ser realizadas pelo PROC MODELO. Para erros AR (1), essas iniciais podem ser produzidas como mostrado na Tabela 18.2. Esses métodos são equivalentes em grandes amostras. Tabela 18.2 Inicializações realizadas pelo PROC MODELO: AR (1) ERROS Os atrasos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de maneiras diferentes. Os procedimentos de ARIMA e MODELO seguintes são suportados pelos seguintes procedimentos: mínimos quadrados incondicionais, mínimos quadrados condicionais. O método dos mínimos quadrados condicionais para estimar os termos de erro em média móvel não é otimizado porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos remanescentes iniciais, que se estendem antes do início dos dados, são assumidos como 0, seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Geralmente, essa diferença converge rapidamente para 0, mas para processos em média móveis quase não-reversíveis, a convergência é bastante lenta. Para minimizar este problema, você deve ter muitos dados e as estimativas dos parâmetros da média móvel devem estar bem dentro do intervalo inversível. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: os erros médios em movimento podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) ao processo de média móvel. Um processo de média móvel geralmente pode ser bem-aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A AR Macro A macro macro SAS gera declarações de programação para PROC MODEL para modelos autoregressivos. A macro AR faz parte do software SASETS e nenhuma opção especial precisa ser configurada para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equação estrutural ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de autorregressão: autoregresão vetorial irrestrita Autoregresão vetorial restrita Autoriação Univariada Para modelar o termo de erro de uma equação como processo autoregressivo, use a seguinte declaração após a equação: Por exemplo, suponha que Y seja um Função linear de X1, X2 e um erro AR (2). Você escreveria este modelo da seguinte maneira: as chamadas para AR devem vir após todas as equações ao qual o processo se aplica. A invocação de macro anterior, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída da opção LIST para um modelo AR (2) As variáveis prefixadas PRED são variáveis de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às declarações explicitamente escritas na seção Formulário geral para modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em atrasos selecionados. Por exemplo, se você queria parâmetros autorregressivos nos intervalos 1, 12 e 13, você pode usar as seguintes instruções: Essas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída da opção LIST para um modelo AR com Lags em 1, 12 e 13 O MODELO Lista de Procedimentos da Declaração de Código do Programa Compilado como Pareded PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - REAL. y ERROR. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais de AR usa todas as observações e assume zeros para os atrasos iniciais de termos autorregressivos. Ao usar a opção M, você pode solicitar que o AR use o método de mínimos quadrados incondicionais (ULS) ou máximo (ML). Por exemplo, as discussões desses métodos são fornecidas na seção AR Condições iniciais. Ao usar a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos de autorregressão iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo auto - gressivo à variável endógena, em vez do termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os últimos atrasos de Y para a equação no exemplo anterior, você poderia usar AR para gerar os parâmetros e atrasos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 LIST Opção Saída para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma intercepção e os valores de Y nos cinco períodos mais recentes. Autoregression vetorial sem restrições Para modelar os termos de erro de um conjunto de equações como um processo auto-regressivo de vetor, use a seguinte forma da macro AR após as equações: O nome do nome do processo é qualquer nome que você fornece para que AR use na criação de nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processos para cada conjunto. O nome do processo garante que os nomes de variáveis usados sejam únicos. Use um valor curto do nome do processo para o processo se as estimativas dos parâmetros forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetros menores ou iguais a oito caracteres, mas isso é limitado pelo comprimento do nome do processo. Que é usado como um prefixo para os nomes dos parâmetros AR. O valor variablelist é a lista de variáveis endógenas para as equações. Por exemplo, suponha que os erros das equações Y1, Y2 e Y3 sejam gerados por um processo auto-regressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código similar para Y2 e Y3: Somente o método de mínimos quadrados condicionais (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições que a matriz de coeficientes seja 0 em atrasos selecionados. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes no intervalo 2 restrito a 0 e com os coeficientes nos atrasos 1 e 3 sem restrições: você pode modelar as três séries Y1Y3 como um processo auto-regressivo vetorial Nas variáveis em vez dos erros usando a opção TYPEV. Se você quer modelar Y1Y3 como uma função de valores passados de Y1Y3 e algumas variáveis ou constantes exógenas, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregente do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregente do modelo pode ser uma função de variáveis exógenas, ou pode ser parâmetros de interceptação. Se não existirem componentes exógenos para o modelo de autoregressão vetorial, incluindo sem interceptações, atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis antes de chamar AR. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo possui 18 (3 3 3 3) parâmetros. Sintaxe da AR Macro Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem o formulário geral especifica um prefixo para AR para usar na construção de nomes de variáveis necessárias para definir o processo AR. Se o endolista não for especificado, a lista endógena padrão nomeará. Que deve ser o nome da equação a que o processo de erro AR deve ser aplicado. O valor do nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações para as quais o processo AR deve ser aplicado. Se for dado mais de um nome, um processo vetorial irrestrito é criado com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolista padrão nomeará. Especifica a lista de atrasos em que os termos AR devem ser adicionados. Os coeficientes dos termos em atrasos não listados são definidos como 0. Todos os atrasos listados devem ser inferiores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglista é padrão para todos os atrasos 1 através de nlag. Especifica o método de estimação para implementar. Os valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). O MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos vetoriais AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis endógenas em vez de aos resíduos estruturais das equações. Autoregression vetorial restrita Você pode controlar quais parâmetros estão incluídos no processo, restringindo a 0 os parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis e definir a dimensão do processo. Em seguida, use chamadas de AR adicionais para gerar termos para equações selecionadas com variáveis selecionadas em atrasos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo afirma que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não de Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas no intervalo 1. Sintaxe de macro AR para vetor vetorial restrito O uso alternativo de AR pode impor restrições sobre um processo de AR vetorial ao chamar AR várias vezes para especificar diferentes termos de AR e atrasos para diferentes Equações. A primeira chamada tem o formulário geral especifica um prefixo para AR para usar na construção de nomes de variáveis necessárias para definir o processo do vetor AR. Especifica a ordem do processo AR. Especifica a lista de equações para as quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR, mas é esperar por informações adicionais especificadas em chamadas AR mais recentes para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolista da primeira chamada para o valor do nome podem aparecer na lista de equações na eqlist. Especifica a lista de equações cujos resíduos estruturais atrasados devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolista da primeira chamada para o valor do nome podem aparecer na varlist. Se não for especificado, varlist é padrão para endolista. Especifica a lista de atrasos em que os termos AR devem ser adicionados. Os coeficientes dos termos em atrasos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist é padrão para todos os atrasos 1 até nlag. A MA Macro A macro macro SAS gera declarações de programação para PROC MODEL para modelos em média móveis. A macro MA é parte do software SASETS e nenhuma opção especial é necessária para usar a macro. O processo de erro em média móvel pode ser aplicado aos erros de equação estrutural. A sintaxe da macro MA é a mesma que a macro AR, exceto que não existe um argumento TYPE. Quando você está usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SASIML produzem um processo de erro ARMA (1, (1 3)) e salve-o no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: as estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um ARMA (1, (1 3)) Processo Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo de vetor MA não são necessárias, a sintaxe da macro MA tem o formulário geral especifica um prefixo para MA para usar na construção de nomes de variáveis necessárias para definir o processo MA e é o endolista padrão. É a ordem do processo de MA. Especifica as equações para as quais o processo MA deve ser aplicado. Se mais de um nome for dado, a estimativa de CLS é usada para o processo vetorial. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser inferiores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglista é padrão para todos os atrasos 1 através de nlag. Especifica o método de estimação para implementar. Os valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). O MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolista. Sintaxe de Macro MA para Média de Movimento de Vetor Restrito Um uso alternativo de MA é permitido para impor restrições em um processo de vetor de MA, chamando MA várias vezes para especificar diferentes termos e atrasos de MA para diferentes equações. A primeira chamada tem o formulário geral especifica um prefixo para MA para usar na construção de nomes de variáveis necessárias para definir o processo de vetor MA. Especifica a ordem do processo MA. Especifica a lista de equações para as quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo MA, mas é esperar por informações adicionais especificadas em chamadas MA mais recentes para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações a que as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais atrasados devem ser incluídos como regressores nas equações em eqlist. Especifica a lista de atrasos em que os termos MA devem ser adicionados. Signal ProcessingDigital Filters Os filtros digitais são, por essência, sistemas amostrados. Os sinais de entrada e saída são representados por amostras com distância de tempo igual. Os filtros de resposta de Implulgação finita (FIR) são caracterizados por uma resposta de tempo dependendo apenas de um dado número das últimas amostras do sinal de entrada. Em outros termos: uma vez que o sinal de entrada caiu para zero, a saída do filtro fará o mesmo após um determinado número de períodos de amostragem. A saída y (k) é dada por uma combinação linear das últimas amostras de entrada x (k i). Os coeficientes b (i) dão o peso para a combinação. Eles também correspondem aos coeficientes do numerador da função de transferência de filtro do domínio z. A figura a seguir mostra um filtro FIR da ordem N 1: Para os filtros de fase linear, os valores dos coeficientes são simétricos em torno do meio e a linha de atraso pode ser dobrada em volta desse ponto do meio para reduzir o número de multiplicações. A função de transferência de filtros FIR apenas permite um numerador. Isso corresponde a um filtro totalmente zero. Os filtros FIR normalmente requerem pedidos elevados, na magnitude de várias centenas. Assim, a escolha deste tipo de filtros precisará de uma grande quantidade de hardware ou CPU. Apesar disso, uma das razões para escolher uma implementação do filtro FIR é a capacidade de alcançar uma resposta de fase linear, o que pode ser um requisito em alguns casos. No entanto, o designer fiter tem a possibilidade de escolher filtros IIR com uma boa linearidade de fase na banda passante, como os filtros Bessel. Ou para projetar um filtro allpass para corrigir a resposta de fase de um filtro IIR padrão. Filtros médios móveis (MA) Os modelos Editar modelo médio móvel (MA) são modelos de processo na forma: os processos MA são uma representação alternativa dos filtros FIR. Filtros médios Editar Um filtro calculando a média das N últimas amostras de um sinal É a forma mais simples de um filtro FIR, sendo todos os coeficientes iguais. A função de transferência de um filtro médio é dada por: A função de transferência de um filtro médio possui N zeros igualmente espaçados ao longo do eixo de freqüência. No entanto, o zero em DC é mascarado pelo pólo do filtro. Por isso, existe um lóbulo maior, um DC que explica a banda de passagem do filtro. Filtros Integrator-Comb (CIC) em cascata Edit A O filtro integrador-pente em cascata (CIC) é uma técnica especial para a implementação de filtros médios colocados em série. A colocação em série dos filtros médios melhora o primeiro lobo em DC em comparação com todos os outros lóbulos. Um filtro CIC implementa a função de transferência de N filtros médios, cada um calculando a média de amostras R M. Sua função de transferência é assim dada por: os filtros CIC são usados para dizimar o número de amostras de um sinal por um fator de R ou, em outros termos, reescrever um sinal a uma freqüência mais baixa, descartando amostras R 1 de R. O fator M indica quanto do primeiro lobo é usado pelo sinal. O número de estádios de filtro médio, N. Indica quão bem outras bandas de freqüência são amortecidas, à custa de uma função de transferência menos plana em torno de DC. A estrutura CIC permite implementar todo o sistema com apenas agregadores e registros, não usando multiplicadores que sejam gananciosos em termos de hardware. O downsampling por um fator de R permite aumentar a resolução do sinal pelos bits log 2 (R) (R). Filtros canônicos Edit Canonical filters implementam uma função de transferência de filtro com vários elementos de atraso iguais à ordem do filtro, um multiplicador por coeficiente de numerador, um multiplicador por coeficiente de denominador e uma série de elementos de som. De forma semelhante às estruturas canónicas de filtros ativos, esse tipo de circuitos mostrou-se muito sensível aos valores dos elementos: uma pequena alteração em coeficientes teve um grande efeito na função de transferência. Aqui também, o design de filtros ativos mudou de filtros canônicos para outras estruturas, como cadeias de seções de segunda ordem ou filtros de salto. Cadeia de secções de segunda ordem Editar uma seção de segunda ordem. Muitas vezes referido como biquad. Implementa uma função de transferência de segunda ordem. A função de transferência de um filtro pode ser dividida em um produto de funções de transferência associadas a um par de pólos e possivelmente um par de zeros. Se a ordem das funções de transferência for estranha, então uma seção de primeira ordem deve ser adicionada à cadeia. Esta seção está associada ao pólo real e ao zero real se houver um. Forma direta 1 forma direta 2 forma direta 1 transposição de forma direta 2 transposta A forma direta 2 transposta da figura a seguir é especialmente interessante em termos de hardware exigido, bem como a quantificação de sinal e coeficiente. Digital Leapfrog Filters Editar estrutura de filtro Editar filtros de salto digital base na simulação de filtros de salto analógico ativo. O incentivo para esta escolha é herdar das excelentes propriedades de sensibilidade à banda passante do circuito de escada original. O seguinte filtro de 4passões de allpass do allpass do pólo pode ser implementado como um circuito digital, substituindo os integradores analógicos por acumuladores. A substituição dos integradores analógicos por acumuladores corresponde a simplificar a transformada Z em z 1 s T. Quais são os dois primeiros termos da série Taylor de z e x p (s T). Essa aproximação é boa o suficiente para filtros onde a freqüência de amostragem é muito maior do que a largura de banda do sinal. Transferir Função A representação do espaço de estado do filtro precedente pode ser escrita como: A partir deste conjunto de equações, pode-se escrever as matrizes A, B, C, D como: A partir desta representação, as ferramentas de processamento de sinais, como Octave ou Matlab, permitem traçar A resposta de freqüência dos filtros ou para examinar seus zeros e pólos. No filtro de salto digital, os valores relativos dos coeficientes definem a forma da função de transferência (Butterworth. Chebyshev.), Enquanto suas amplitudes definem a freqüência de corte. Dividir todos os coeficientes por um fator de dois desloca a frequência de corte para baixo em uma oitava (também um fator de dois). Um caso especial é o filtro Buterworth de 3ª ordem, que possui constantes de tempo com valores relativos de 1, 12 e 1. Devido a isso, este filtro pode ser implementado em hardware sem qualquer multiplicador, mas usando mudanças em vez disso. Os modelos Autoregressive Filters (AR) Edit Autoregressive Filters (AR) Edit Autoregressive (AR) são modelos de processo na forma: Onde u (n) é a saída do modelo, x (n) é a entrada do modelo e u (n - m) são anteriores Amostras do valor de saída do modelo. Esses filtros são chamados de autorregressivos porque os valores de saída são calculados com base em regressões dos valores de saída anteriores. Os processos AR podem ser representados por um filtro de todos os pólos. Filtros ARMA Edit Autoregressive Moving-Average (ARMA) filtros são combinações de AR e MA filtros. A saída do filtro é dada como uma combinação linear tanto da entrada ponderada como das amostras de saída ponderadas: os processos ARMA podem ser considerados como um filtro IIR digital, com pólos e zeros. Os filtros AR são preferidos em muitos casos porque podem ser analisados usando as equações de Yule-Walker. Os processos MA e ARMA, por outro lado, podem ser analisados por equações não-lineares complicadas, difíceis de estudar e modelar. Se tivermos um processo AR com coeficientes de peso de toque a (um vetor de a (n), a (n - 1).) Uma entrada de x (n). E uma saída de y (n). Podemos usar as equações de Yule-Walker. Dizemos que x 2 é a variância do sinal de entrada. Tratamos o sinal de dados de entrada como um sinal aleatório, mesmo que seja um sinal determinista, porque não sabemos qual será o valor até que o receba. Podemos expressar as equações de Yule-Walker como: Onde R é a matriz de correlação cruzada da saída do processo E r é a matriz de autocorrelação da saída do processo: Variance Edit Podemos mostrar que: Podemos expressar a variância do sinal de entrada como: Ou , Expandindo e substituindo in para r (0). Podemos relacionar a variância de saída do processo com a variância de entrada:
Комментариев нет:
Отправить комментарий